

HVCRC® ACCESSORIES CATALOG

SICAME Group

SICAME Group is a recognized world leader specializing in the design and manufacturing of components, accessories, equipment's and services for Transmission and Distribution electrical networks.

With decades of background and recognized experience, SICAME Transmission business unit is specialized in designing, manufacturing, and producing a comprehensive ranges of Transmission lines and systems connectors, damping systems, hardware, and has the most advanced substation fitting solutions. These are adapted to the most technical configurations such as 8-bundle Spacer dampers, UHV HVDC connectors or innovative or High Temperature conductor's accessories.

SICAME Transmission relies on world-class brands: Dervaux, Salvi, SBI connectors, SICAME India, SKELT, SEF, and CICAME Energie

- Renowned and trustworthy in the Transmission realm thanks to its unique know-how
- Giving our customers the best-in-class solutions

High temperature low sag cable line hardware (HTLS)

Since 2001, SICAME Transmission has been working closely with the French electricity grid (RTE: Réseaux de Transport d'Electricité) and other major Utilities, to successfully qualify for the HTLS conductor sets and accessories.

SICAME Transmission has confirmed for many years now, proven its strong technical capacity to design line hardware suitable to the HTLS conductors' characteristics requirements:

- Maximum operating temperature (up to 250°C)
- Fully annealed aluminum for conductor strands
- Carbon core conductor accessories design expertise

These specific Conductor characteristics require the study and qualification of line hardware that result in safe, durable installations, irespective of whether these are for new or existing lines.

HTLS accessories

Our offering includes a complete range of suspension, anchoring, and connection accessories for poles.

EPSILON COMPOSITE CABLE

Our mission: create and implement sustainable innovative solutions to modernize power lines worldwide

Since 1987, Epsilon has been a pioneer and world leader in high-performance composite materials thanks to the pultrusion process. This highly efficient technology, combined with the extraordinary properties of carbon fibers makes the perfect solution to manufacture strong durable cores for High-Temperature Low Sag (HTLS) conductors. In addition to its R&D center and pultrusion facilities in France, Epsilon Composite Cable relies on technical support teams in America, Asia, and Europe, as well as other stranding partners all around the world.

HVCRC ® Technology

HVCRC®, or High Voltage Composite Reinforced Conductors, stands for a complete range of HTLS conductors made up of a carbon-glass epoxy composite core and trapezoidal 1350-O annealed aluminum strands.

Compared with a traditional ACSR conductor, HVCRC® conductors allow to double the ampacity of a line or to decrease line losses by up to 30% while reducing sag. Several thousands of kilometers of HVCRC® conductors have been installed and energized successfully around the world since 2012, which makes it one of the leading new generation overhead high voltage conductors.

Epsilon manufactures composite core by pultrusion, using aerospace grade carbon fibers and specific resins to ensure the highest performance and durability. HVCRC® cores are qualified according to ASTM B987. They include a micro core and an electrically insulating glass fiber layer, to increase the core performance and flexibility, and protect the aluminum strands from galvanic corrosion.

ASTM B987

Epsilon Composite Cable works with the most demanding cable manufacturers to help them achieve their ambitious performance and cost targets.

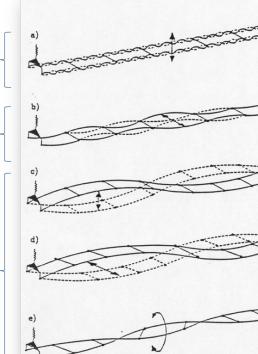
HVCRC ® Accessories and installation

HVCRC® conductors are installed using conventional compression accessories designed by Sicame, unlike some other HTLS solution, this reduces installation costs and complexity. As a result, the training of installation crews is simplified, and there is less risks of line failure due to improper installation. Different experts from Epsilon, Sicame or the stranding partners always support installation companies providing the up to date, current practices and guidelines to installation crews before and during installation.

Damping science mastering

SICAME Group has vast experience on many overhead HTLS lines which have successfully been protected from vibration. SICAME has gained this experience, through advanced research projects including various partnerships with universities, scientific expertise using state of the art vibration simulation, damping techniques, and including various elastomer materials.

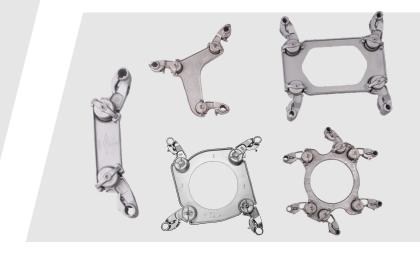
SICAME expertise in R&D, design & test has and continues to assist Engineers, Consultants, and Utilities globally, with new types of spacer dampers or vibration dampers for all types of conductor configurations.


SICAME Damping Systems Vibrations models induced by wind on single and bundled conductors which generate undesirable and dangerous phenomena on the OHTL:

- Aeolian Vibration (Vortex Shedding)
- Wake Induced Oscillation (Sub-Span Oscillation)
- Galloping

Sicame has developed the models which are linked to the tensile conductor loading and the particular evolution of self-damping linked to the use of the HTLS conductor.

Wake Induced Oscillation
(Sub-Span Oscillation)


Galloping

Vibration level are controlled by Sicame using Damping Systems of Spacer Dampers and Vibration Dampers.

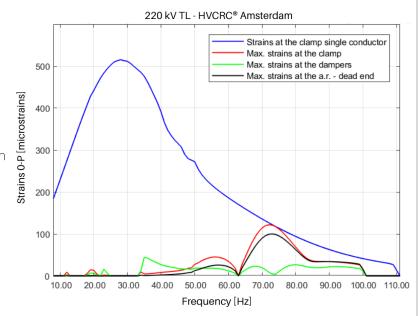
Spacer Dampers (SD)

The range of SICAME SD covers all possible applications:

- Voltage up to 1.200kV
- Bundle Spacing up to 1.200mm
- Any conductor types
- Different clamping solutions

Vibration Dampers (VD)

In order to satisfy the demands of the market, our range of VD is very wide. It includes models with galvanized steel or Zamac coated masses and models with galvanized steel or stainless-steel messenger cable.


Analytical Evaluation

Damping Systems design

Politecnico di Milano.

An optimum Damping Systems is designed to evaluate the two vibration phenomena (Aeolian vibration and Sub-Conductor oscillation) on the OHTL, by means of a damping study, performed with validated software, issued by a collaboration with

Due to thousands of hours of tests, we have acquired a good understanding of the dedicated self-damping profile linked to HTLS conductor and their different types.

Damping Systems validation

The validation of a Damping System is carried out with measurements performed by SICAME equipment and personnel on the site ie (FIELD TEST). Such tests verify the real level of vibrations compared with evaluation at the design stage with the analytical method ie (DAMPING STUDY).

SICAME Transmission: Laboratories & Testing

The Laboratory is vital in assisting both design activities and product verification. During the design stage, it supports the Technical Department in its activity of Research and Development while in the product verification stage all Quality Control mechanical verifications and tests are carried out to include batch acceptance tests.

A testing laboratory able to characterize and qualify HTLS conductors & accessories

SICAME Transmission has state of the art resources among the best in the world which means that low sag / high ampacity conductors and accessories can be fine-tuned and qualified. The studies and trials are performed in accordance to the power, environmental, and configuration parameters of the line to be fitted. All tests comply with the requirements of the international reference standards or/and with the technical specifications of each country.

6 laboratories worldwide

2 Certified laboratories:

- DERVAUX Lab. In Saint-Etienne (FRANCE)
- SICAME INDIA Laboratory in Chennai (INDIA) University partnership (Politecnico of Milano and Barcelona university)

COFRAC
ACCREDITATION
ST-ETIENNE
LABORATORY

Mechanical and electrical tests

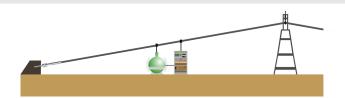
	Category	Equipment	Tests	Standards
		000 kN sanaila sant hanab Lanath . 04m	Tensile tests on dead end and mid span joint	IEC 61284
	Tensile tests	800 kN tensile test bench. Length: 21m Program with stress and displacement	Mechanical fatigue test	IEC 61284
		instructions	Vertical tests on suspension clamp	IEC 61284
			Stress train tests	EN 50182
		800 kN tensile test bench. Length: 21m	On suspension clamp	IEC 61284
	Slip tests	Program with stress and displacement	On vibration dampers	IEC 61897
		instructions	On spacer dampers	IEC 61854
Cre	eep test	Experimental span of 20m to 50m Ambient temperature regulation system: max 0.2°C/hour Thermal sensor, laser displacement sensor, load sensor	Mechanical fatigue test	IEC 61284

Electrical tests

Heat cycle test at 200 °C

	Category	Equipment	Tests	Standards	}
	Heat cycle	Generator; 6000A-40V;21 thermal sensors Generator; 3000A-40V;21 thermal sensor	Dead end, mid span joint, jumper terminal, connectors	IEC 61284	
ŀ	High Voltage	HV generator up to 250 kV phase- ground (equivalent to 430 kV phase to phase)	On suspension clamp	IEC 61284	
Sim	nulated short circuit	Test bench for spacers (x2, x3, x4)	Compression and tension	IEC 61854	




Combined mechanical and electrical tests

	Category	Equipment	Tests	Standards
	Heat cycle	800 kN tensile tests bench Current generator 50Hz; 6000A-40V; 21 thermal sensors	High temperature tensile test	IEC 61284
	High Voltage	800 kN tensile tests bench Current generator 50Hz; 6000A-40V;21 thermal sensors Thermocouples, laser displacement sensor, load sensor	CTE on all conductors	CIGRE TB426
High temperature tensile bench test	Simulated short circuit	Slipping test area. Lenght: 20m Regulated tensile machine, sensor: 250kN, 200kN, 50kN Current generator 50Hz; 6000A-40V;21 thermal sensors	Slip tests on all conductors	IEC 61284

Vibratory test

Others tests

Category	Equipment	Tests	Standards
Salt spray	Combo climatic chamber: T° range -60°C to +180°C Coupling with shaker Dry & wet heat	Corrosion test on every type of fittings	ISO 9227-2007

Full-Scale Mechanical Tests:

We are also capable of carrying out full-scale mechanical tests in independent and accredited laboratories to verify the actual mechanical behaviour of the full strings.

Electrical tests on complete strings:

RIV and Corona, Power Arc, and Short Circuit are conducted out in independent and accredited laboratories according to International Standards and prescriptions of Project Technical Specifications

Compression fittings

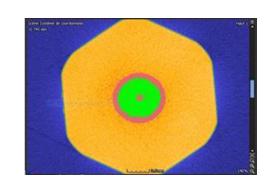
The compression fittings are co-developed and designed in collaboration with Epsilon Composite Cable. Solution uses specific protective sleeve to protect the carbon core and brings high controlled crimping rate.

The dedicated design allows a simple on-site installation, workers can use the same installation process and tools as a conventional ACSR conductor.

Our connecting pads, aluminum sections, crimping length, and grease inhibitor are specifically designed to support the unique high transit capacity provided by HVCRC $^{\circ}$ cable

Jumper terminal

Repair sleeve



Compression rate sizing

For more than 20 years we have developed our knowledge related to the innovative technologies of composite cables. Based on this experience, we have fundamentally changed our designs of compressed fittings to adapt them to traditional crimping methods. We thus seek to guarantee perfect safety in the use of sleeves, by offering the possibility of using a technique proven on innovative products.

Our products respond perfectly to use in all circumstances and withstand without any problem accepting the highest transits associated with the use of these high temperature conductors throughout their life. The compression ratios have been defined to guarantee electrical continuity and ensure the mechanical resistance of the rod, while optimizing the compression lengths, in order to obtain a compact, reliable and robust fitting, which are easy to install on site.

References compression fittings

Reference	Internationnal Size	ASTM	Ø (mm)	Dead-End	Mid-span joint	joint Jumper terminal	Repair sleeve
HVCRC®130-28	SILVASSA		14.35	V2XRFFK	JXFFK	CDAXRSFK	R150K
HVCRC®160-28	HELSINKI	PASADENA	15.65	V2XRFFK	JXFFK	CDAXRSFK	R170K
HVCRC®160-18	BERN	1	15.5	V2XRFFK	JXFFK	CDAXRSFK	R170K
HVCRC® 180-40	ZADAR	1	17.09	V2XRFFK	JXFFK	CDAXRSFK	R185K
HVCRC®230-28	COPENHAGEN	LINNET	18.29	V2XRFFK	JXFFK	CDAXRSFK	R210K
HVCRC® 230-40	REYKJAVIK	ORIOLE	18.82	V2XRFFK	JXFFK	CDAXRSFK	R210K
HVCRC® 230-87	MONTE CARLO	1	20.78	V2XRFFK	JXFFK	CDAXRSFK	R235K
HVCRC®240-47	GLASGOW	WACO	19.55	V2XRFFK	JXFFK	CDAXRSFK	R210K
HVCRC®250-28	GDANSK	1	19.21	V2XRFFK	JXFFK	CDAXRSFK	R210K
HVCRC®280-40	CASABLANCA	LAREDO	20.51	V2XRFFK	JXFFK	CDAXRSFK	R235K
HVCRC®320-47	OSLO	IRVING	22.4	V2XRFFK	JXFFK	CDAXRSFK	R235K
HVCRC®320-40	LISBON	HAWK	21.79	V2XRFFK	JXFFK	CDAXRSFK	R235K
HVCRC®370-47	AMSTERDAM	DOVE	23.55	V2XRFFK	JXFFK	CDAXRSFK	R255K
HVCRC®430-52	BRUSSELS	GROSBEAK	25.13	V2XRFFK	JXFFK	CDAXRSFK	R280K
HVCRC®470-60	STOCKHOLM	LUBBOCK	26.4	V2XRWPL4T16FFK	JXFFK	CDAXRSWPL4T16FK	R280K
HVCRC®520-60	WARSAW	CUCKOO	27.72	V2XRWPL4T16FFK	JXFFK	CDAXRSWPL4T16FK	R301K
HVCRC®530-71	DUBLIN	DRAKE	28.17	T3XRWPL4T16FFK	JXFFK	CDAXRSWPL4T16FK	R323K
HVCRC®560-60	HAMBURG	PLANO	28.62	V2XRWPL4T16FFK	JXFFK	CDAXRSWPL4T16FK	R323K
HVCRC®580-60	MILAN	CORPUS CHRISTI	29.1	V2XRWPL4T16FFK	JXFFK	CDAXRSWPL4T16FK	R323K
HVCRC®600-71	ROME	ARLINGTON	29.87	T3XRWPL4T16FFK	JXFFK	CDAXRSWPL4T16FK	R323K
HVCRC®640-60	VIENNA	CARDINAL	30.42	V2XWPL6T16FFK	JXFFK	CDAXSWPL6T16FK	R323K
HVCRC®680-71	BUDAPEST	FORT WORTH	31.49	T3XWPL6T16FFK	JXFFK	CDAXSWPL6T16FK	R350K
HVCRC®700-60	PRAGUE	EL PASO	31.8	V2XWPL6T16FFK	JXFFK	CDAXSWPL6T16FK	R350K
HVCRC®740-71	MUNICH	BEAUMONT	32.87	T3XWPL6T16FFK	JXFFK	CDAXSWPL6T16FK	R350K
HVCRC®770-75	LONDON	SAN ANTONIO	33.42	T3XWPL6T16FFK	JXFFK	CDAXSWPL6T16FK	R390K
HVCRC®820-60	PARIS	BITTERN	34.2	T2XWPL6T16FFK	JXK	CDAXSWPL6T16FK	R390K
HVCRC® 880-87	BORDEAUX	ı	35.76	T3XWPL6T16FFK	JXK	CDAXSWPL6T16FK	R390K
HVCRC®950-75	ANTWERP	DALLAS	36.9	T3XWPL6T16FFK	JXFFK	CDAXSWPL6T16FK	R400K

For example : When you communicate the accessories references for compression fittings to Sicame, please add the international size to the conductor reference.

- Dead end for HVCRC Lisbon is: V2XRFFK HVCRC LISBON
- Jumper terminal for HVCRC Amsterdam is: CDAXRSFK HVCRC AMSTERDAM

Suspension clamp and vibration damper

Suspension clamps

The armor grip design gives soft retention of the conductor without an inflection point, to avoid vibration fatigue, and stress on carbon core. Armor rod sets reduce the local temperature of a conductor by decreasing the joule effect and increasing the thermal dissipation.

The lining of the suspension clamps have been specially designed and tested to guarantee the protection of the conductor in contact with the suspension clamp, by integrating the constraints of the external environment (UV, bad weather, etc.) associated with the high operating temperature requirements of the HVCRC cable.

Vibration damper

Installed on armor rods sets to protect the soft aluminum and reduce the local temperature of the conductor.

4 frequency response for larger damping spectrum.

Dedicated clamp/attachment design to use on armor rod set.

Space dampers can also be supplied in case of multiple bundles.

References suspension clamp and vibration damper

VZ + AAR360-374	SAR360-374 HTZ	36.9	DALLAS	ANTWERP	HVCRC®950-75
STUP + AAR354-360	SAR354-360 HTZ	35.76		BORDEAUX	HVCRC® 880-87
STUP + AAR334-344	SAR334-344 HTZ	34.2	BITTERN	PARIS	HVCRC®820-60
STUP + AAR334-344	SAR334-344 HTZ	33.42	SAN ANTONIO	LONDON	HVCRC®770-75
STUN +AAR327-333	SAR327-333 HTZ	32.87	BEAUMONT	MUNICH	HVCRC®740-71
STUN + AAR312-319	SAR312-319 HTZ	31.8	EL PASO	PRAGUE	HVCRC®700-60
STUN + AAR312-319	SAR312-319 HTZ	31.49	FORT WORTH	BUDAPEST	HVCRC®680-71
STUN + AAR301-306	SAR301-306 HTZ	30.42	CARDINAL	VIENNA	HVCRC®640-60
STUN + AAR295-301	SAR295-301 HTZ	29.87	ARLINGTON	ROME	HVCRC®600-71
STUN + AAR289-295	SAR289-295 HTZ	29.1	CORPUS CHRISTI	MILAN	HVCRC®580-60
STUN +AAR279-289	SAR279-289 HTZ	28.62	PLANO	HAMBURG	HVCRC®560-60
STUN + AAR279-289	SAR279-289 HTZ	28.17	DRAKE	DUBLIN	HVCRC®530-71
STUN + AAR270-279	SAR270-279 HTZ	27.72	CUCKOO	WARSAW	HVCRC®520-60
STPN + AAR263-270	SAR263-270 HTZ	26.4	LUBBOCK	STOCKHOLM	HVCRC®470-60
STPN + AAR248-253	SAR248-253 HTZ	25.13	GROSBEAK	BRUSSELS	HVCRC®430-52
STPL + AAR230-236	SAR230-236 HTZ	23.55	DOVE	AMSTERDAM	HVCRC®370-47
STPL + AAR219-226	SAR219-226 HTZ	21.79	HAWK	LISBON	HVCRC®320-40
STPL + AAR219-226	SAR219-226 HTZ	22.4	IRVING	OSLO	HVCRC®320-47
STPL + AAR200-206	SAR200-206 HTZ	20.51	LAREDO	CASABLANCA	HVCRC®280-40
STNL + AAR195-199	SAR188-195 HTZ	19.21	,	GDANSK	HVCRC®250-28
STNL + AAR195-199	SAR195-199 HTZ	19.55	WACO	GLASGOW	HVCRC®240-47
STPL + AAR206-213	SAR206-213 HTZ	20.78	•	MONTE CARLO	HVCRC® 230-87
STNL + AAR188-195	SAR188-195 HTZ	18.82	ORIOLE	REYKJAVIK	HVCRC® 230-40
STNL + AAR178-183	SAR178-183 HTZ	18.29	LINNET	COPENHAGEN	HVCRC®230-28
STNJC + AAR166-172	SAR 166-172 HTZ	17.09	,	ZADAR	HVCRC® 180-40
STNJC + AAR154-159	SAR 154-159 HTZ	15.5	,	BERN	HVCRC®160-18
STNJC + AAR154-159	SAR 154-159 HTZ	15.65	PASADENA	HELSINKI	HVCRC®160-28
STLJC + AAR140-145	SAR140-145 HTZ	14.35	•	SILVASSA	HVCRC®130-28
Stockbridge damper + AR	Suspension clamp	Ø (mm)	ASTM	Internationnal Size	Reference

www.sicame.com www.epsilon-cable.com

EPSILON COMPOSITE **CABLE** | 5 Route de Hourtin - BP 30052 - 33340 Gaillan-en-Médoc - FRANCE

Dervaux SA - Sicame Group | Z.I. Le Bec - Allée Ampère - B.P. 49 - 42501 Le Chambon Feugerolles - FRANCE

Phone: +33 (0)556 734 774 | E-mail: contact@epsilon-cable.com

Phone: +33 (0)477 401 740 | E-mail: info@dervaux.fr

EPSILON COMPOSITE CABLE
The alternative